Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Asmita Kumari and K. Vidyasagar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

Correspondence e-mail: kvsagar@iitm.ac.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Ga–S) = 0.006 Å R factor = 0.053 wR factor = 0.186 Data-to-parameter ratio = 19.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 18 July 2005

Accepted 3 August 2005

Online 12 August 2005

Rubidium thiogallate

 $RbGaS_2$, for which only cell parameters were previously known, consists of GaS_2 layers interleaved with Rb atoms.

Comment

There are eight $AGaS_2$ (A = alkali metal, Tl, Cu and Ag) compounds known. They contain gallium in tetrahedral coordination and have four types of diverse structures, ranging from one-dimensional to three-dimensional. For RbGaS₂ and TlGaS₂, only unit-cell parameters are available, whereas for the five $AGaS_2$ (A = Li, K, Cs, Ag Cu) compounds, structures have been determined by single-crystal X-ray diffraction. LiGaS₂ is derived from zincite, wherein Li and Ga atoms occupy the tetrahedral sites in an hcp array of S atoms in an ordered fashion (Leal-Gonzalez *et al.*, 1990). The structure of KGaS₂ was solved in the non-centrosymmetric space group Aa (Lemoine *et al.*, 1984) but is actually the same as that of layered TlGaSe₂, with the centrosymmetric space group C2/c (Müller & Hahn, 1978; Henkel *et al.*, 1982). NaGaS₂, RbGaS₂ and TlGaS₂ are believed to have the same TlGaSe₂ structure

ORTEP-3 (Farrugia, 1997) diagrams of the tetrahedral Ga₄S₁₀ unit (top)

and bicapped trigonal prism of Rb1S₈ (bottom). Displacement ellipsoids

are drawn at the 50% probability level. [Symmetry codes as in Table 1.]

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Figure 1

inorganic papers

Figure 2

Polyhedral representation of the GaS_2 layer viewed along [101] (top), and the unit cell contents of $RbGaS_2$ viewed along the *a* axis (bottom).

(Hoppe, 1965; Schubert & Hoppe, 1970; Klepp, 1992; Müller et al., 1974). CsGaS₂ is a one-dimensional compound, in which a GaS₄ tetrahedron shares edges with two other tetrahedra to form GaS₂ chains that are separated by Cs atoms (Schmitz & Bronger, 1975). CuGaS₂ and AgGaS₂ compounds are of chalcopyrite type (Abrahams & Bernstein, 1973a,b). We report here the single-crystal X-ray structure of RbGaS₂, confirming that it is isotypic with TlGaSe₂. It is noteworthy that the crystal structure elucidation of RbGaS₂ has so far remained elusive, because of twinning and stacking faults that are common for crystals of such layered compounds (Kienle et al., 2004). KInS₂ (Lowe-Ma et al., 1991; Eisenmann & Hofmann, 1991a), KInSe₂ (Krebs, 1983), RbInS₂ (Müller & Hahn, 1978), CsInS₂, KTIS₂, RbTIS₂, CsTIS₂ (Schubert & Hoppe, 1970), TlAlSe₂, TlAlS₂, TlInS₂ (Müller et al., 1974) and NaAlSe₂ (Eisenmann & Hofmann, 1991b) are the other known compounds with the TlGaSe₂ structure.

In RbGaS₂, four GaS₄ tetrahedra form adamantane-like Ga₄S₁₀ units (Fig. 1). These units are connected by corners to one another to give rise to GaS₂ layers, which are stacked along the *c* axis and interleaved with Rb atoms (Fig. 2). The Rb atoms have bicapped trigonal prismatic coordination, as shown for Rb1 in Fig. 1. Bond lengths and angles compare well with those reported in the literature (Devi & Vidyasagar, 2002; Schmitz & Bronger, 1975; Lemoine *et al.*, 1984; Yao & Ibers, 2004).

Experimental

The chemicals used for synthesis were of greater than 99% purity and were purchased from CERAC Inc. and Alfa Aesar. A mixture of Rb₂CO₃ (0.2 g, 0.086 mmol), Ga₂S₃ (0.0139 g, 0.059 mmol) and S (0.1388 g, 4.32 mmol) was sealed in an evacuated fused-silica tube of 13 cm length and 1.3 cm diameter, heated in a furnace at 1023 K for 4 d and then cooled to room temperature over a period of 4 d. The product was washed with water to dissolve away the rubidium polysulfide flux, enabling the isolation of single-phase RbGaS₂ in the form of plate-like red–brown crystals (0.0608 g, 75% based on Ga₂S₃). The powder X-ray diffraction pattern of the sample compares well with that simulated using the program *LAZY PULVERIX* (Yvon *et al.*, 1977) on the basis of the single-crystal X-ray structure.

Crystal data

RbGaS₂ $M_r = 219.31$ Monoclinic, C2/c a = 10.484 (15) Å b = 10.468 (15) Å c = 15.390 (16) Å $\beta = 99.69$ (10)° V = 1665 (4) Å³ Z = 16

Data collection

Enraf-Nonius CAD-4 diffractometer ω - 2θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.076$, $T_{\max} = 0.150$ 3083 measured reflections 1476 independent reflections 895 reflections with $I > 2\sigma(I)$

Refinement

Table 1

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.186$ S = 1.191476 reflections 75 parameters Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 18.99 \text{ mm}^{-1}$ T = 293 (2) K Block, brown $0.2 \times 0.1 \times 0.1 \text{ mm}$

 $D_x = 3.499 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\begin{aligned} R_{\rm int} &= 0.077 \\ \theta_{\rm max} &= 25.0^{\circ} \\ h &= -12 \rightarrow 8 \\ k &= -12 \rightarrow 8 \\ l &= -18 \rightarrow 18 \\ 2 \text{ standard reflections} \\ \text{frequency: 60 min} \\ \text{intensity decay: none} \end{aligned}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0817P)^2 \\ &+ 20.9393P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} < 0.001 \\ \Delta\rho_{max} = 1.32 \ e^{-3} \\ \Delta\rho_{min} = -1.35 \ e^{-3} \\ &\text{Extinction correction: SHELXL97} \\ &\text{Extinction coefficient: 0.00029 (8)} \end{split}$$

Selected interatomic distances (Å).

Ga1-S1	2.263 (5)	Rb1-S2 ^{vi}	3.380 (6)
Ga1-S3 ⁱ	2.268 (6)	Rb1-S1 ^{vii}	3.384 (6)
Ga1-S5 ⁱ	2.294 (5)	Rb1-S2	3.717 (7)
Ga1-S2	2.300 (5)	Rb1-S2 ^v	3.734 (7)
Ga2-S1	2.263 (5)	Rb2-S5 ^{viii}	3.318 (6)
Ga2-S4 ⁱⁱ	2.271 (6)	Rb2-S2 ^{ix}	3.350 (6)
Ga2-S5	2.288 (5)	Rb2-S1 ^x	3.419 (6)
Ga2-S2 ⁱⁱⁱ	2.296 (5)	Rb2-S1	3.424 (6)
Rb1-S5 ^{iv}	3.330 (6)	Rb2-S3 ⁱ	3.425 (5)
Rb1-S3 ^v	3.365 (7)	Rb2-S4	3.425 (4)
Rb1-S4	3.366 (7)	Rb2-S5 ^{xi}	3.728 (7)
Rb1-S1	3.370 (5)	Rb2-S5	3.731 (7)

The highest peak and the deepest hole in the final Fourier map are located 0.85 Å from Ga2 and 1.18 Å from Ga1, respectively.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* in *WinGX* (Farrugia, 1999); program(s) used to solve structure: *SHELXL86* (Sheldrick, 1986); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1999) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We thank the Sophisticated Analytical Instrument Facility of our institute for the single-crystal X-ray data collection.

References

- Abrahams, S. C. & Bernstein, J. L. (1973a). J. Chem. Phys. 59, 1625-1629.
- Abrahams, S. C. & Bernstein, J. L. (1973b). J. Chem. Phys. 59, 5415–5422.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Devi, M. S. & Vidyasagar, K. (2002). *J. Chem. Soc. Dalton Trans.* pp. 4751–
- 4754.
- Eisenmann, B. & Hofmann, A. (1991a). Z. Kristallogr. 195, 318-319.
- Eisenmann, B. & Hofmann, A. (1991b). Z. Kristallogr. 197, 171-172.
- Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Henkel, W., Hochheimer, H. D., Carlone, C., Werner, A., Ves, S. & von Schnering, H. G. (1982). Phys. Rev. B, 26, 3211–3221.
- Hoppe, R. (1965). Bull. Soc. Chim. Fr. pp. 1115–1121.
- Kienle, L., Duppel, V., Simon, A., Schlosser, M. & Jarchow, O. (2004). J. Solid State Chem. 177, 6–16.
- Klepp, K. O. (1992). Z. Naturforsch. Teil B, 47, 937-941.
- Krebs, B. (1983). Angew. Chem. Int. Ed. Engl. 22, 113-134.
- Leal-Gonzalez, J., Melibary, S. A. & Smith, A. J. (1990). Acta Cryst. C46, 2017–2019.
- Lemoine, P., Carré, D. & Guittard, M. (1984). Acta Cryst. C40, 910-912.
- Lowe-Ma, C. K., Kipp, D. O. & Vanderah, T. A. (1991). J. Solid State Chem. 92, 520–530.
- Müller, D. & Hahn, H. (1978). Z. Anorg. Allg. Chem. 438, 258–272.
- Müller, D., Poltmann, F. E. & Hahn, H. (1974). Z. Naturforsch. Teil B, 29, 117-
- 118. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Schmitz, D. & Bronger, W. (1975). Z. Naturforsch. Teil B, 30, 491-493.
- Schubert, H. & Hoppe, R. (1970). Z. Naturforsch. Teil B, 25, 886-887.
- Sheldrick, G. M. (1986). SHELXS86, University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Yao, J. & Ibers, J. A. (2004). Acta Cryst. E60, i95-i96.
- Yvon, K., Jeitschko, W. & Parthé, E. (1977). J. Appl. Cryst. 10, 73-74.